
handle: 10831/114065
Abstract To understand the formation of the Milky Way’s prominent bar it is important to know whether stars in the bar differ in the chemical element composition of their birth material as compared to disk stars. This requires stellar abundance measurements for large samples across the Milky Way’s body. Such samples, e.g., luminous red giant stars observed by the Sloan Digital Sky Survey’s APOGEE survey, will inevitably span a range of stellar parameters; as a consequence, both modeling imperfections and stellar evolution may preclude consistent and precise estimates of their chemical composition at a level of purported bar signatures, which has left current analyses of a chemically distinct bar inconclusive. Here, we develop a new self-calibration approach to eliminate both modeling and astrophysical abundance systematics among red giant branch (RGB) stars of different luminosities (and hence surface gravity log g ). We apply our method to 48,853 luminous APOGEE Data Release 16 RGB stars to construct spatial abundance maps of 20 chemical elements near the Milky Way’s mid-plane, covering galactocentric radii of 0 kpc < R GC < 20 kpc. Our results indicate that there are no abundance variations whose geometry matches that of the bar, and that the mean abundance gradients vary smoothly and monotonically with galactocentric radius. We confirm that the high-α disk is chemically homogeneous, without spatial gradients. Furthermore, we present the most precise [Fe/H] versus R GC gradient to date with a slope of − 0.057 ±0.001 dex kpc−1 out to approximately 15 kpc.
asztrofizika, Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), QB Astronomy, FOS: Physical sciences, Astrophysics / csillagászat, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)
asztrofizika, Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), QB Astronomy, FOS: Physical sciences, Astrophysics / csillagászat, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
