Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2021 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2021
Data sources: u:cris
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC 0
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-organized Criticality in Stellar Flares

Authors: Markus J. Aschwanden; Manuel Güdel;

Self-organized Criticality in Stellar Flares

Abstract

Abstract Power-law size distributions are the hallmarks of nonlinear energy dissipation processes governed by self-organized criticality (SOC). Here we analyze 75 data sets of stellar flare size distributions, mostly obtained from the Extreme-Ultraviolet Explorer and the Kepler mission. We aim to answer the following questions for size distributions of stellar flares. (i) What are the values and uncertainties of power-law slopes? (ii) Do power-law slopes vary with time? (iii) Do power-law slopes depend on the stellar spectral type? (iv) Are they compatible with solar flares? (v) Are they consistent with SOC models? We find that the observed size distributions of stellar flare fluences (or energies) exhibit power-law slopes of α E = 2.09 ± 0.24 for optical data sets observed with Kepler. The observed power-law slopes do not show much time variability and do not depend on the stellar spectral type (M, K, G, F, A, giants). In solar flares, we find that background subtraction lowers the uncorrected value of α E = 2.20 ± 0.22 to α E = 1.57 ± 0.19. Furthermore, most of the stellar flares are temporally not resolved in low-cadence (30 minutes) Kepler data, which causes an additional bias. Taking these two biases into account, the stellar flare data sets are consistent with the theoretical prediction of SOC models, i.e., α E = 1.5. Thus, accurate power-law fits require automated detection of the inertial range and background subtraction, which can be modeled with the generalized Pareto distribution, finite-system size effects, and extreme event outliers.

Country
Austria
Related Organizations
Keywords

103003 Astronomie, FOS: Physical sciences, Stellar flares, 103004 Astrophysik, Stellar activity; Stellar flares; Solar flares; Astrostatistics; 1580; 1603; 1496; 1882; Astrophysics - Solar and Stellar Astrophysics, 103003 Astronomy, Astrostatistics, Astrophysics - Solar and Stellar Astrophysics, Solar flares, 103004 Astrophysics, Solar and Stellar Astrophysics (astro-ph.SR), Stellar activity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
gold