<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract The light curves of Type II supernovae (SNe II) are believed to be highly affected by recombination of hydrogen that takes place in their envelopes. In this work, we analytically investigate the transition from a fully ionized envelope to a partially recombined one and its effects on the SN light curve. The motivation is to establish the underlying processes that dominate the evolution at late times when recombination takes place in the envelope, yet early enough so that 56Ni decay is a negligible source of energy. We consider the diffusion of photons through the envelope while analyzing the ionization fraction and the coupling between radiation and gas and find that the main effect of recombination is on the evolution of the observed temperature. Before recombination, the temperature decreases relatively fast, while after recombination starts it significantly reduces the rate at which the observed temperature drops with time. This behavior is the main cause for the observed flattening in the optical bands, where for a typical red supergiant explosion the recombination wave affects the bolometric luminosity only mildly during most of the photospheric phase. Moreover, the plateau phase observed in some SNe II is not a generic result of recombination, and it also depends on the density structure of the progenitor. This is one possible explanation for the different light-curve decay rates observed in SNe II (P and L).
High Energy Astrophysical Phenomena (astro-ph.HE), supernovae: general, radiative transfer, FOS: Physical sciences, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - High Energy Astrophysical Phenomena, supernovae: individual
High Energy Astrophysical Phenomena (astro-ph.HE), supernovae: general, radiative transfer, FOS: Physical sciences, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - High Energy Astrophysical Phenomena, supernovae: individual
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |