Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2018 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Limitation of Atmospheric Composition by Combustion–Explosion in Exoplanetary Atmospheres

Authors: John Lee Grenfell; Barbara Stracke; Mareike Godolt; Stefanie Gebauer; Heike Rauer; Heike Rauer; Ralph Lehmann;

Limitation of Atmospheric Composition by Combustion–Explosion in Exoplanetary Atmospheres

Abstract

Abstract This work presents theoretical studies that combine aspects of combustion and explosion theory with exoplanetary atmospheric science. Super-Earths could possess a large amount of molecular hydrogen depending on disk, planetary, and stellar properties. Super-Earths orbiting pre-main-sequence M-dwarf stars have been suggested to possess large amounts of O2(g) produced abiotically via water photolysis followed by hydrogen escape. If these two constituents were present simultaneously, such large amounts of H2(g) and O2(g) can react via photochemistry to form up to ∼10 Earth oceans. In cases where photochemical removal is slow, hence O2(g) can indeed build up abiotically, the atmosphere could reach the combustion–explosion limit. Then, H2(g) and O2(g) react extremely quickly to release energy and form liquid water together with modest amounts of hydrogen peroxide. These processes set constraints for H2(g) and O2(g) atmospheric compositions in Super-Earth atmospheres. Our initial study of the gas-phase oxidation pathways for modest conditions (Earth’s insolation and ∼10th of a percent of H2(g)) suggests that H2(g) is oxidized by O2(g) into H2O(g) mostly via HOx and mixed HOx–NOx catalyzed cycles. Regarding other pairs of atmospheric species, we find that CO–O2 could attain explosive–combustive levels on mini gas planets for midrange C/O in the equilibrium chemistry regime (p > ∼1 bar). Regarding (CH4–O2), a small number of modeled rocky planets assuming Earth-like atmospheres orbiting cooler stars could have compositions at or near the explosive–combustive level although more work is required to investigate this issue.

Keywords

Extrasolare Planeten und Atmosphären, Earth and Planetary Astrophysics (astro-ph.EP), Leitungsbereich PF, FOS: Physical sciences, explosion, ​Atmospheres, combustion, Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
gold