
In this paper we study the large-argument asymptotic behaviour of certain fractional differential equations with Caputo derivatives. We obtain exponential and algebraic asymptotic solutions. The latter, decaying asymptotics differ significantly from the integer-order derivative equations. We verify our theorems numerically and find that our formulas are accurate even for small values of the argument. We analyze the zeros of fractional oscillations and find the approximate formulas for their distribution. Our methods can be used in studying many other fractional equations.
numerical method, QA1-939, approximation, Mathematics, asymptotic solution
numerical method, QA1-939, approximation, Mathematics, asymptotic solution
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
