
doi: 10.37236/954
The distinguishing number $D(G)$ of a graph $G$ is the least cardinal number $\aleph$ such that $G$ has a labeling with $\aleph$ labels that is only preserved by the trivial automorphism. We show that the distinguishing number of the countable random graph is two, that tree-like graphs with not more than continuum many vertices have distinguishing number two, and determine the distinguishing number of many classes of infinite Cartesian products. For instance, $D(Q_{n}) = 2$, where $Q_{n}$ is the infinite hypercube of dimension ${n}$.
automorphism, countable random graph, Ordinal and cardinal numbers, Random graphs (graph-theoretic aspects), labeling, Graphs and abstract algebra (groups, rings, fields, etc.)
automorphism, countable random graph, Ordinal and cardinal numbers, Random graphs (graph-theoretic aspects), labeling, Graphs and abstract algebra (groups, rings, fields, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
