
arXiv: 1908.07920
We introduce a notion of cyclic Schur-positivity for sets of permutations, which naturally extends the classical notion of Schur-positivity, and it involves the existence of a bijection from permutations to standard Young tableaux that preserves the cyclic descent set. Cyclic Schur-positive sets of permutations are always Schur-positive, but the converse does not hold, as exemplified by inverse descent classes, Knuth classes and conjugacy classes. In this paper we show that certain classes of permutations invariant under either horizontal or vertical rotation are cyclic Schur-positive. The proof unveils a new equidistribution phenomenon of descent sets on permutations, provides affirmative solutions to conjectures by the last two authors and by Adin–Gessel–Reiner–Roichman, and yields new examples of Schur-positive sets.
Permutations, words, matrices, cyclic descent set, fundamental quasi-symmetric function, Symmetric functions and generalizations, Symmetric groups, Combinatorial aspects of representation theory, FOS: Mathematics, 05E05, Mathematics - Combinatorics, Combinatorics (math.CO)
Permutations, words, matrices, cyclic descent set, fundamental quasi-symmetric function, Symmetric functions and generalizations, Symmetric groups, Combinatorial aspects of representation theory, FOS: Mathematics, 05E05, Mathematics - Combinatorics, Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
