
doi: 10.37236/768
In his Master's thesis, Ján Mazák proved that the circular chromatic index of the type 1 generalized Blanuša snark $B^1_n$ equals $3+{2\over n}$. This result provided the first infinite set of values of the circular chromatic index of snarks. In this paper we show the type 2 generalized Blanuša snark $B^2_n$ has circular chromatic index $3+{1/\lfloor{1+3n/2}\rfloor}$. In particular, this proves that all numbers $3+1/n$ with $n\ge 2$ are realized as the circular chromatic index of a snark. For $n=1,2$ our proof is computer-assisted.
Coloring of graphs and hypergraphs, circular chromatic index, snarks
Coloring of graphs and hypergraphs, circular chromatic index, snarks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
