
doi: 10.37236/6167
In this paper, we investigate the structure of minimum vertex and edge cuts of distance-regular digraphs. We show that each distance-regular digraph $\Gamma$, different from an undirected cycle, is super edge-connected, that is, any minimum edge cut of $\Gamma$ is the set of all edges going into (or coming out of) a single vertex. Moreover, we will show that except for undirected cycles, any distance regular-digraph $\Gamma$ with diameter $D=2$, degree $k\leq 3$ or $\lambda=0$ ($\lambda$ is the number of 2-paths from $u$ to $v$ for an edge $uv$ of $\Gamma$) is super vertex-connected, that is, any minimum vertex cut of $\Gamma$ is the set of all out-neighbors (or in-neighbors) of a single vertex in $\Gamma$. These results extend the same known results for the undirected case with quite different proofs.
Connectivity, distance-regular digraphs, minimum cuts, connectivity, Directed graphs (digraphs), tournaments, strongly regular digraphs
Connectivity, distance-regular digraphs, minimum cuts, connectivity, Directed graphs (digraphs), tournaments, strongly regular digraphs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
