
doi: 10.37236/615
In this brief note, we give two partition statistics which explain the following partition congruences: \begin{align*} b(5n+4) &\equiv 0 \pmod{5}, \\ b(7n+a) &\equiv 0 \pmod{7}, \text{if $a=2$, $3$, $4$, or $6$}. \end{align*} Here, $b(n)$ is the number of $4$-color partitions of $n$ with colors $r$, $y$, $o$, and $b$ subject to the restriction that the colors $o$ and $b$ appear only in even parts.
Partitions; congruences and congruential restrictions, Combinatorial aspects of partitions of integers
Partitions; congruences and congruential restrictions, Combinatorial aspects of partitions of integers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
