
arXiv: 1301.5889
We consider continuous-time quantum walks on distance-regular graphs. Using results about the existence of complex Hadamard matrices in association schemes, we determine which of these graphs have quantum walks that admit uniform mixing.First we apply a result due to Chan to show that the only strongly regular graphs that admit instantaneous uniform mixing are the Paley graph of order nine and certain graphs corresponding to regular symmetric Hadamard matrices with constant diagonal. Next we prove that if uniform mixing occurs on a bipartite graph $X$ with $n$ vertices, then $n$ is divisible by four. We also prove that if $X$ is bipartite and regular, then $n$ is the sum of two integer squares. Our work on bipartite graphs implies that uniform mixing does not occur on $C_{2m}$ for $m \geq 3$. Using a result of Haagerup, we show that uniform mixing does not occur on $C_p$ for any prime $p$ such that $p \geq 5$. In contrast to this result, we see that $\epsilon$-uniform mixing occurs on $C_p$ for all primes $p$.
Quantum Physics, Graphs and linear algebra (matrices, eigenvalues, etc.), FOS: Physical sciences, uniform mixing, association schemes, Quantum information, communication, networks (quantum-theoretic aspects), FOS: Mathematics, Association schemes, strongly regular graphs, quantum walks, Mathematics - Combinatorics, Combinatorics (math.CO), Quantum Physics (quant-ph)
Quantum Physics, Graphs and linear algebra (matrices, eigenvalues, etc.), FOS: Physical sciences, uniform mixing, association schemes, Quantum information, communication, networks (quantum-theoretic aspects), FOS: Mathematics, Association schemes, strongly regular graphs, quantum walks, Mathematics - Combinatorics, Combinatorics (math.CO), Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
