
doi: 10.37236/3960
A Hamilton circle in an infinite graph is a homeomorphic copy of the unit circle $S^1$ that contains all vertices and all ends precisely once. We prove that every connected, locally connected, locally finite, claw-free graph has such a Hamilton circle, extending a result of Oberly and Sumner to infinite graphs. Furthermore, we show that such graphs are Hamilton-connected if and only if they are $3$-connected, extending a result of Asratian. Hamilton-connected means that between any two vertices there is a Hamilton arc, a homeomorphic copy of the unit interval $[0,1]$ that contains all vertices and all ends precisely once.
infinite graphs, Eulerian and Hamiltonian graphs, Infinite graphs, graph theory, Hamilton cycles
infinite graphs, Eulerian and Hamiltonian graphs, Infinite graphs, graph theory, Hamilton cycles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
