Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Journal of Combinatorics
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2012
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large Incidence-free Sets in Geometries

Large incidence-free sets in geometries
Authors: De Winter, Stefaan; Schillewaert, Jeroen; Verstraete, Jacques;

Large Incidence-free Sets in Geometries

Abstract

Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$. In the case that $\Pi$ is the projective plane $\mathsf{PG}(2,q)$, where $P$ is the set of points and $L$ is the set of lines of the projective plane, Haemers proved that maximal arcs in projective planes together with the set of lines not intersecting the maximal arc determine $\alpha(\mathsf{PG}(2,q))$ when $q$ is an even power of $2$. Therefore, in those cases,\[ \alpha(\Pi) = q(q - \sqrt{q} + 1)^2.\] We give both a short combinatorial proof and a linear algebraic proof of this result, and consider the analogous problem in generalized polygons. More generally, if $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$, where $1 \leq k \leq n - 1$, and $\Pi_q = (P,L,I)$, then we show as $q \rightarrow \infty$ that \[ \frac{1}{4}q^{(k + 2)(n - k)} \lesssim \alpha(\Pi) \lesssim q^{(k + 2)(n - k)}.\] The upper bounds are proved by combinatorial and spectral techniques. This leaves the open question as to the smallest possible value of $\alpha(\Pi)$ for each value of $k$. We prove that if for each $N \in \mathbb N$, $\Pi_N$ is a partial linear space with $N$ points and $N$ lines, then $\alpha(\Pi_N) \gtrsim \frac{1}{e}N^{3/2}$ as $N \rightarrow \infty$.

Related Organizations
Keywords

generalized polygons, Eigenvalues, singular values, and eigenvectors, eigenvalues, probabilistic method, Probabilistic methods in extremal combinatorics, including polynomial methods (combinatorial Nullstellensatz, etc.), Generalized quadrangles and generalized polygons in finite geometry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Average
gold