
doi: 10.37236/2831
Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$. In the case that $\Pi$ is the projective plane $\mathsf{PG}(2,q)$, where $P$ is the set of points and $L$ is the set of lines of the projective plane, Haemers proved that maximal arcs in projective planes together with the set of lines not intersecting the maximal arc determine $\alpha(\mathsf{PG}(2,q))$ when $q$ is an even power of $2$. Therefore, in those cases,\[ \alpha(\Pi) = q(q - \sqrt{q} + 1)^2.\] We give both a short combinatorial proof and a linear algebraic proof of this result, and consider the analogous problem in generalized polygons. More generally, if $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$, where $1 \leq k \leq n - 1$, and $\Pi_q = (P,L,I)$, then we show as $q \rightarrow \infty$ that \[ \frac{1}{4}q^{(k + 2)(n - k)} \lesssim \alpha(\Pi) \lesssim q^{(k + 2)(n - k)}.\] The upper bounds are proved by combinatorial and spectral techniques. This leaves the open question as to the smallest possible value of $\alpha(\Pi)$ for each value of $k$. We prove that if for each $N \in \mathbb N$, $\Pi_N$ is a partial linear space with $N$ points and $N$ lines, then $\alpha(\Pi_N) \gtrsim \frac{1}{e}N^{3/2}$ as $N \rightarrow \infty$.
generalized polygons, Eigenvalues, singular values, and eigenvectors, eigenvalues, probabilistic method, Probabilistic methods in extremal combinatorics, including polynomial methods (combinatorial Nullstellensatz, etc.), Generalized quadrangles and generalized polygons in finite geometry
generalized polygons, Eigenvalues, singular values, and eigenvectors, eigenvalues, probabilistic method, Probabilistic methods in extremal combinatorics, including polynomial methods (combinatorial Nullstellensatz, etc.), Generalized quadrangles and generalized polygons in finite geometry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
