
We study the problem of counting alternating permutations avoiding collections of permutation patterns including $132$. We construct a bijection between the set $S_n(132)$ of $132$-avoiding permutations and the set $A_{2n + 1}(132)$ of alternating, $132$-avoiding permutations. For every set $p_1, \ldots, p_k$ of patterns and certain related patterns $q_1, \ldots, q_k$, our bijection restricts to a bijection between $S_n(132, p_1, \ldots, p_k)$, the set of permutations avoiding $132$ and the $p_i$, and $A_{2n + 1}(132, q_1, \ldots, q_k)$, the set of alternating permutations avoiding $132$ and the $q_i$. This reduces the enumeration of the latter set to that of the former.
132-avoiding permutations, Permutations, words, matrices, counting alternating permutations, avoiding permutations patterns, Exact enumeration problems, generating functions, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05A15
132-avoiding permutations, Permutations, words, matrices, counting alternating permutations, avoiding permutations patterns, Exact enumeration problems, generating functions, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05A15
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
