
doi: 10.37236/139
The labeled factorizations of a positive integer $n$ are obtained as a completion of the set of ordered factorizations of $n$. This follows a new technique for generating ordered factorizations found by extending a method for unordered factorizations that relies on partitioning the multiset of prime factors of $n$. Our results include explicit enumeration formulas and some combinatorial identities. It is proved that labeled factorizations of $n$ are equinumerous with the systems of complementing subsets of $\{0,1,\dots,n-1\}$. We also give a new combinatorial interpretation of a class of generalized Stirling numbers.
Partitions of sets, Bell and Stirling numbers, Factorization, Combinatorial identities, bijective combinatorics
Partitions of sets, Bell and Stirling numbers, Factorization, Combinatorial identities, bijective combinatorics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
