
doi: 10.37236/1385
Consider lattice paths in Z$^2$ with three step types: the up diagonal $(1,1)$, the down diagonal $(1,-1)$, and the double horizontal $(2,0)$. For $n \geq 1$, let $S_n$ denote the set of such paths running from $(0,0)$ to $(2n,0)$ and remaining strictly above the x-axis except initially and terminally. It is well known that the cardinalities, $r_n = |S_n|$, are the large Schröder numbers. We use lattice paths to interpret bijectively the recurrence $ (n+1) r_{n+1} = 3(2n - 1) r_{n} - (n-2) r_{n-1}$, for $n \geq 2$, with $r_1=1$ and $r_2=2$. We then use the bijective scheme to prove a result of Kreweras that the sum of the areas of the regions lying under the paths of $S_n$ and above the x-axis, denoted by $AS_n$, satisfies $ AS_{n+1} = 6 AS_n - AS_{n-1}, $ for $n \geq 2$, with $AS_1 =1$, and $AS_2 =7$. Hence $AS_n = 1, 7, 41, 239 ,1393, \ldots$. The bijective scheme yields analogous recurrences for elevated Catalan paths.
lattice paths, Exact enumeration problems, generating functions, Schröder numbers, Catalan paths
lattice paths, Exact enumeration problems, generating functions, Schröder numbers, Catalan paths
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
