Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Journal of Combinatorics
Article . 1998 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1998
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bijective Recurrences concerning Schröder Paths

Bijective recurrences concerning Schröder paths
Authors: Robert A. Sulanke;

Bijective Recurrences concerning Schröder Paths

Abstract

Consider lattice paths in Z$^2$ with three step types: the up diagonal $(1,1)$, the down diagonal $(1,-1)$, and the double horizontal $(2,0)$. For $n \geq 1$, let $S_n$ denote the set of such paths running from $(0,0)$ to $(2n,0)$ and remaining strictly above the x-axis except initially and terminally. It is well known that the cardinalities, $r_n = |S_n|$, are the large Schröder numbers. We use lattice paths to interpret bijectively the recurrence $ (n+1) r_{n+1} = 3(2n - 1) r_{n} - (n-2) r_{n-1}$, for $n \geq 2$, with $r_1=1$ and $r_2=2$. We then use the bijective scheme to prove a result of Kreweras that the sum of the areas of the regions lying under the paths of $S_n$ and above the x-axis, denoted by $AS_n$, satisfies $ AS_{n+1} = 6 AS_n - AS_{n-1}, $ for $n \geq 2$, with $AS_1 =1$, and $AS_2 =7$. Hence $AS_n = 1, 7, 41, 239 ,1393, \ldots$. The bijective scheme yields analogous recurrences for elevated Catalan paths.

Related Organizations
Keywords

lattice paths, Exact enumeration problems, generating functions, Schröder numbers, Catalan paths

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Average
gold