
doi: 10.37236/1204
The edges of the complete graph $K_n$ are coloured so that no colour appears more than $\lceil cn\rceil$ times, where $c < 1/32$ is a constant. We show that if $n$ is sufficiently large then there is a Hamiltonian cycle in which each edge is a different colour, thereby proving a 1986 conjecture of Hahn and Thomassen. We prove a similar result for the complete digraph with $c < 1/64$. We also show, by essentially the same technique, that if $t\geq 3$, $c < (2t^2(1+t))^{-1}$, no colour appears more than $\lceil cn\rceil$ times and $t|n$ then the vertices can be partitioned into $n/t$ $t-$sets $K_1,K_2,\ldots,K_{n/t}$ such that the colours of the $n(t-1)/2$ edges contained in the $K_i$'s are distinct. The proof technique follows the lines of Erdős and Spencer's modification of the Local Lemma.
Eulerian and Hamiltonian graphs, Coloring of graphs and hypergraphs, colour, Hamiltonian cycle, Directed graphs (digraphs), tournaments, Paths and cycles, complete graph, digraph
Eulerian and Hamiltonian graphs, Coloring of graphs and hypergraphs, colour, Hamiltonian cycle, Directed graphs (digraphs), tournaments, Paths and cycles, complete graph, digraph
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
