
arXiv: 2101.12061
A permutation $\pi$ contains a pattern $\sigma$ if and only if there is a subsequence in $\pi$ with its letters in the same relative order as those in $\sigma$. Partially ordered patterns (POPs) provide a convenient way to denote patterns in which the relative order of some of the letters does not matter. This paper elucidates connections between the avoidance sets of a few POPs with other combinatorial objects, directly answering five open questions posed by Gao and Kitaev in 2019. This was done by thoroughly analysing the avoidance sets and developing recursive algorithms to derive these sets and their corresponding combinatorial objects in parallel, which yielded natural bijections. We also analysed an avoidance set whose simple permutations are enumerated by the Fibonacci numbers and derived an algorithm to obtain them recursively.
Permutations, words, matrices, Exact enumeration problems, generating functions, FOS: Mathematics, Fibonacci and Lucas numbers and polynomials and generalizations, Mathematics - Combinatorics, avoidance sets, Fibonacci numbers, Combinatorics (math.CO), 05A05, 05A15
Permutations, words, matrices, Exact enumeration problems, generating functions, FOS: Mathematics, Fibonacci and Lucas numbers and polynomials and generalizations, Mathematics - Combinatorics, avoidance sets, Fibonacci numbers, Combinatorics (math.CO), 05A05, 05A15
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
