Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pain Physicianarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pain Physician
Article . 2010 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pain Physician
Article
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activated Microglia in Nociception

Authors: Howard S, Smith;

Activated Microglia in Nociception

Abstract

Microglial cells appear to play a vital role in the initiation of certain neuropathic pain states. In order to initiate neuropathic pain, microglia need to be activated. Microglia activation in the spinal cord involves both hypertrophy as well as hyperplasia, progressing through a hypertrophic morphology, with thickened and retracted processes (observed within the first 24 hours after nerve injury), and an increase in cell number (observed around 2–3 days after nerve injury). There seems to be at least 5 major paths to activate microglia. These 5 pathways will be discussed and are identified by their main signaling mediator and/or receptor which include fractalkine, interferon-gamma, monocyte chemoattractant protein-1, TLR4, and P2X4. Thus, one or more of these mediators/pathways which lead to microglial activation might contribute to neuropathic pain. A greater appreciation of the roles of various mediators/paths which activate microglia might help lead to future novel therapeutic targets in efforts to ameliorate severe symptoms of neuropathic pain. Key words: microglial cells, glia, C-fiber nociceptors, neuropathic pain, hypertrophy, hyperplasia

Related Organizations
Keywords

Hyperplasia, Chemokine CX3CL1, Receptors, Purinergic P2, Neuropeptides, Nociceptors, Hypertrophy, Toll-Like Receptor 4, Interferon-gamma, Spinal Cord, Animals, Humans, Neuralgia, Microglia, Receptors, Purinergic P2X4, Chemokine CCL2

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
gold