
doi: 10.35784/jcsi.3767
The objective of this study was to carry out a performance analysis of the following database systems: MySQL, PostgreSQL and Microsoft SQL Server. For this purpose scripts were used to measure execution times of selecting, updating and inserting data. Furthermore, three data sets were utilized consisting of 100, 1000 and 10000 rows. The experiment included nine cases depending on the query type and the data set. For each case, thirty five test trials were conducted while first five trials were ignored i.a. because of cache storage. The statistical test was performed for the results and the trials in which the DBMS achieved best times were counted. For each case best systems were acknowledged and the most efficient system of the experiment was determined along with systems for each operation type.
PostgreSQL, Electronic computers. Computer science, MySQL, Information technology, QA75.5-76.95, performance analysis, T58.5-58.64, Microsoft SQL Server
PostgreSQL, Electronic computers. Computer science, MySQL, Information technology, QA75.5-76.95, performance analysis, T58.5-58.64, Microsoft SQL Server
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
