Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FACTOR STATISTICAL ANALYSIS OF THE INFLUENCE OF FACTORS ON GENDER INEQUALITY

ФАКТОРНЫЙ СТАТИСТИЧЕСКИЙ АНАЛИЗ КОМПОНЕНТОВ, ВЛИЯЮЩИХ НА ГЕНДЕРНОЕ НЕРАВЕНСТВО

FACTOR STATISTICAL ANALYSIS OF THE INFLUENCE OF FACTORS ON GENDER INEQUALITY

Abstract

В данной статье рассматривается применение факторного статистического анализа для изучения влияния различных факторов на гендерное неравенство. Разработана система показателей, которая помогает определить экономическую, социальную и политическую среду, влияющую на гендерное развитие. Для проверки эффективности этой системы была использована методика расчета главных компонент на всероссийских официальных статистических данных. В ходе исследования были выявлены две главные компоненты, которые имеют значительное влияние на формирование гендерных различий. Первая компонента связана с экономическим ростом, а вторая - с социальным благополучием. Эти два фактора оказывают существенное воздействие на равенство возможностей между мужчинами и женщинами. Результаты данного исследования могут быть полезны для разработки стратегий и программ, направленных на преодоление гендерного неравенства. Они предоставляют ценную информацию для разработчиков политики и принимающих решения, чтобы создать равные возможности для обоих полов. This article discusses the use of factor statistical analysis to study the impact of various factors on gender inequality. A system of indicators has been developed that helps to determine the economic, social and political environment that affects gender development. To test the effectiveness of this system, the method of calculating the main components on the All-Russian official statistical data was used. The study identified two main components that have a significant impact on the formation of gender differences. The first component is related to economic growth, and the second is related to social well-being. These two factors have a significant impact on equality of opportunity between men and women. The results of this study can be useful for the development of strategies and programs aimed at overcoming gender inequality. They provide valuable information for policy makers and decision makers to create equal opportunities for both genders.

Related Organizations
Keywords

гендерные различия, метод главных компонент, economic factors, gender inequality, the method of the main components, социальные факторы, гендерное неравенство, влияние факторов, the influence of factors, gender differences, факторный статистический анализ, экономические факторы, factor statistical analysis, social factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!