
Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium-type representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent) and Dark Energy (a scalar element); respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.
High Energy Physics - Theory, Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Axion electrodynamics, 530, General Relativity and Quantum Cosmology, High Energy Physics - Theory (hep-th), Dark energy, Dark matter, dark matter; dark energy; axion electrodynamics, Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Theory, Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Axion electrodynamics, 530, General Relativity and Quantum Cosmology, High Energy Physics - Theory (hep-th), Dark energy, Dark matter, dark matter; dark energy; axion electrodynamics, Astrophysics - Cosmology and Nongalactic Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
