
doi: 10.3390/sym13081313
Probabilistic functional equations have been used to analyze various models in computational biology and learning theory. It is worth noting that they are linked to the symmetry of a system of functional equations’ transformation. Our objective is to propose a generic probabilistic functional equation that can cover most of the mathematical models addressed in the existing literature. The notable fixed-point tools are utilized to examine the existence, uniqueness, and stability of the suggested equation’s solution. Two examples are also given to emphasize the significance of our findings.
fixed points, functional equation, stability
fixed points, functional equation, stability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
