
doi: 10.3390/sym13040591
In this paper, we are concerned with completely integrable Hamiltonian systems and generalized action–angle coordinates in the setting of contact geometry. We investigate the deformations of the Sasaki–Einstein structures, keeping the Reeb vector field fixed, but changing the contact form. We examine the modifications of the action–angle coordinates by the Sasaki–Ricci flow. We then pass to the particular cases of the contact structures of the five-dimensional Sasaki–Einstein manifolds T1,1 and Yp,q.
contact geometry, contact Hamiltonian systems, Sasaki–Ricci flow, Sasaki–Einstein space
contact geometry, contact Hamiltonian systems, Sasaki–Ricci flow, Sasaki–Einstein space
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
