
doi: 10.3390/sym12050790
Symmetry and elementary symmetric functions are main components of the proof of the celebrated Hermite–Lindemann theorem (about the transcendence of e α , for algebraic values of α ) which settled the ancient Greek problem of squaring the circle. In this paper, we are interested in similar results, but for powers such as e γ log n . This kind of problem can be posed in the context of arithmetic functions. More precisely, we study the arithmetic nature of the so-called γ-th arithmetic zeta function ζ γ ( n ) : = n γ ( = e γ log n ), for a positive integer n and a complex number γ . Moreover, we raise a conjecture about the exceptional set of ζ γ , in the case in which γ is transcendental, and we connect it to the famous Schanuel’s conjecture.
zeta arithmetic function, Schanuel’s conjecture, Hermite–Lindemann theorem, symmetry, transcendental numbers
zeta arithmetic function, Schanuel’s conjecture, Hermite–Lindemann theorem, symmetry, transcendental numbers
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
