
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.
Chemical technology, chemical sensors, TP1-1185, Review, Biosensing Techniques, Equipment Design, Chemistry Techniques, Analytical, whole cell biosensor, immobilization of biologicals, fiber-optic sensor, tapered optical fiber, Fiber Optic Technology, Humans, Biological Assay, enzymatic sensor, chemical sensor, Optical Fibers
Chemical technology, chemical sensors, TP1-1185, Review, Biosensing Techniques, Equipment Design, Chemistry Techniques, Analytical, whole cell biosensor, immobilization of biologicals, fiber-optic sensor, tapered optical fiber, Fiber Optic Technology, Humans, Biological Assay, enzymatic sensor, chemical sensor, Optical Fibers
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 172 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% | 
