Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2023
License: CC BY
Data sources: HAL-INSU
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reconstruction of Annual Glacier Mass Balance from Remote Sensing-Derived Average Glacier-Wide Albedo

Authors: Zhang, Zhimin; Jiang, Liming; Sun, Yafei; Sirguey, Pascal; Dumont, Marie; Liu, Lin; Gao, Ning; +1 Authors

Reconstruction of Annual Glacier Mass Balance from Remote Sensing-Derived Average Glacier-Wide Albedo

Abstract

Annual mass balance is an important reflection of glacier status that is also very sensitive to climate fluctuations. However, there is no effective and universal albedo-based method for the reconstruction of annual mass balance due to the scarcity of field observations. Here, we present an improved albedo–mass balance (IAMB) method to estimate annual glacier surface mass balance series using remote sensing techniques. The averaged glacier-wide albedo derived with the MODImLab algorithm during the summer season provides an effective proxy of the annual mass change. Defined as the variation in the albedo as a function of elevation change, the altitude–albedo gradient (∂z/∂α) can be obtained from a glacier digital elevation model (DEM) and optical images. The Chhota Shigri glacier situated in the western Himalayas was selected to test and assess the accuracy of this method over the period from 2003 to 2014. Reconstructed annual mass budgets correlated well with those from the observed records, with an average difference and root mean square error (RMSE) of −0.75 mm w.e. a−1 and 274.91 mm w.e. a−1, respectively, indicating that the IAMB method holds promise for glacier mass change monitoring. This study provides a new technique for annual mass balance estimation that can be applied to glaciers with no or few mass balance observations.

Keywords

[SDE] Environmental Sciences, glacier-wide albedo, IAMB, Chhota Shigri glacier, Science, Q, annual mass balance; glacier-wide albedo; MODImLab; Chhota Shigri glacier; altitude–albedo gradient; IAMB, annual mass balance, altitude–albedo gradient, MODImLab

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold