
doi: 10.3390/pr9071127
Clean energy resources have become a worldwide concern, especially photovoltaic (PV) energy. Solar cell modeling is considered one of the most important issues in this field. In this article, an improvement for the search steps of the bald eagle search algorithm is proposed. The improved bald eagle search (IBES) was applied to estimate more accurate PV model parameters. The IBES algorithm was applied for conventional single, double, and triple PV models, in addition to modified single, double, and triple PV models. The IBES was evaluated by comparing its results with the original BES through 15 benchmark functions. For a more comprehensive analysis, two evaluation tasks were performed. In the first task, the IBES results were compared with the original BES for parameter estimation of original and modified tribe diode models. In the second task, the IBES results were compared with different recent algorithms for parameter estimation of original and modified single and double diode models. All tasks were performed using the real data for a commercial silicon solar cell (R.T.C. France). From the results, it can be concluded that the results of the modified models were more accurate than the conventional PV models, and the IBES behavior was better than the original BES and other compared algorithms.
photovoltaic energy, Single, Improved bald eagle search, triple photovoltaic models, Commercial silicon solar cell, commercial silicon solar cell, Photovoltaic energy, Triple photovoltaic models, improved bald eagle search, single
photovoltaic energy, Single, Improved bald eagle search, triple photovoltaic models, Commercial silicon solar cell, commercial silicon solar cell, Photovoltaic energy, Triple photovoltaic models, improved bald eagle search, single
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
