Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Processes
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Processes
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

Comparison of Exergy and Advanced Exergy Analysis in Three Different Organic Rankine Cycles

Authors: Shahab Yousefizadeh Dibazar; Gholamreza Salehi; Afshin Davarpanah;

Comparison of Exergy and Advanced Exergy Analysis in Three Different Organic Rankine Cycles

Abstract

Three types of organic Rankine cycles (ORCs): basic ORC (BORC), ORC with single regeneration (SRORC) and ORC with double regeneration (DRORC) under the same heat source have been simulated in this study. In the following, the energy and exergy analysis and the advanced exergy analysis of these three cycles have been performed and compared. With a conventional exergy analysis, researchers can just evaluate the performance of components separately to find the one with the highest amount of exergy destruction. Advanced analysis divides the exergy destruction rate into unavoidable and avoidable, as well as endogenous and exogenous, parts. This helps designers find more data about the effect of each component on other components and the real potential of each component to improve its efficiency. The results of the advanced exergy analysis illustrate that regenerative ORCs have high potential for reducing irreversibilities compared with BORC. Total exergy destruction rates of 4.13 kW (47%) and 5.25 kW (45%) happen in avoidable/endogenous parts for SRORC and DRORC, respectively. Additionally, from an advanced exergy analysis viewpoint, the priority of improvement for system components is given to turbines, evaporators, condensers and feed-water heaters, respectively.

Related Organizations
Keywords

exergy, regenerative cycle, advanced exergy analysis, organic Rankine cycle

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 1%
Top 10%
Top 1%
gold