<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
MicroR159 (miR159) is ancient, being present in the majority of land plants where it targets a class of regulatory genes called GAMYB or GAMYB-like via highly conserved miR159-binding sites. These GAMYB genes encode R2R3 MYB domain transcription factors that transduce the gibberellin (GA) signal in the seed aleurone and the anther tapetum. Here, GAMYB plays a conserved role in promoting the programmed cell death of these tissues, where miR159 function appears weak. By contrast, GAMYB is not involved in GA-signaling in vegetative tissues, but rather its expression is deleterious, leading to the inhibition of growth and development. Here, the major function of miR159 is to mediate strong silencing of GAMYB to enable normal growth. Highlighting this requirement of strong silencing are conserved RNA secondary structures associated with the miR159-binding site in GAMYB mRNA that promotes miR159-mediated repression. Although the miR159-GAMYB pathway in vegetative tissues has been implicated in a number of different functions, presently no conserved role for this pathway has emerged. We will review the current knowledge of the different proposed functions of miR159, and how this ancient pathway has been used as a model to help form our understanding of miRNA biology in plants.
580, flowering, tapetum, GAMYB, vegetative growth, Botany, Review, <i>GAMYB</i>, miR159, QK1-989, aleurone, programmed cell death
580, flowering, tapetum, GAMYB, vegetative growth, Botany, Review, <i>GAMYB</i>, miR159, QK1-989, aleurone, programmed cell death
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 115 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |