
doi: 10.3390/math9222892
In this article, we introduce a new class of operators on the Cartesian product of vector lattices. We say that a bilinear operator T:E×F→W defined on the Cartesian product of vector lattices E and F and taking values in a vector lattice W is narrow if the partial operators Tx and Ty are narrow for all x∈E,y∈F. We prove that, for order-continuous Köthe–Banach spaces E and F and a Banach space X, the classes of narrow and weakly function narrow bilinear operators from E×F to X are coincident. Then, we prove that every order-to-norm continuous C-compact bilinear regular operator T is narrow. Finally, we show that a regular bilinear operator T from the Cartesian product E×F of vector lattices E and F with the principal projection property to an order continuous Banach lattice G is narrow if and only if |T| is.
<i>C</i>-compact operator, bilinear operator, QA1-939, Köthe–Banach space, narrow operator, vector lattice, order-to-norm continuous operator, regular operator, Mathematics
<i>C</i>-compact operator, bilinear operator, QA1-939, Köthe–Banach space, narrow operator, vector lattice, order-to-norm continuous operator, regular operator, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
