
doi: 10.3390/math9202588
A generalization of the well-known Fibonacci sequence is the k−Fibonacci sequence whose first k terms are 0,…,0,1 and each term afterwards is the sum of the preceding k terms. In this paper, we find all k-Fibonacci numbers that are curious numbers (i.e., numbers whose base ten representation have the form a⋯ab⋯ba⋯a). This work continues and extends the prior result of Trojovský, who found all Fibonacci numbers with a prescribed block of digits, and the result of Alahmadi et al., who searched for k-Fibonacci numbers, which are concatenation of two repdigits.
generalized Fibonacci number, repdigit, linear form in logarithms, QA1-939, reduction method, Mathematics
generalized Fibonacci number, repdigit, linear form in logarithms, QA1-939, reduction method, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
