
doi: 10.3390/math7111110
In this paper, we determine the upper and lower bound for the total domination number and exact values and the upper bound for the double-total domination number on hexagonal grid H m , n with m hexagons in a row and n hexagons in a column. Further, we explore the ratio between the total domination number and the number of vertices of H m , n when m and n tend to infinity.
total domination number, hexagonal grid, double-total domination number, QA1-939, total domination number ; double total domination number ; hexagonal grid ; molecular graph, molecular graph, Mathematics, double total domination number
total domination number, hexagonal grid, double-total domination number, QA1-939, total domination number ; double total domination number ; hexagonal grid ; molecular graph, molecular graph, Mathematics, double total domination number
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
