
doi: 10.3390/math12010002
In this paper, we introduce the concepts of Harary Laplacian-energy-like for a simple undirected and connected graph G with order n. We also establish novel matrix results in this regard. Furthermore, by employing matrix order reduction techniques, we derive upper and lower bounds utilizing existing graph invariants and vertex connectivity. Finally, we characterize the graphs that achieve the aforementioned bounds by considering the generalized join operation of graphs.
QA1-939, Harary matrix, Laplacian-energy-like, vertex connectivity, reciprocal distance Laplacian matrix, Mathematics
QA1-939, Harary matrix, Laplacian-energy-like, vertex connectivity, reciprocal distance Laplacian matrix, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
