
doi: 10.3390/math11092146
If X is a convex subset of a topological vector space and f is a real bifunction defined on X×X, the problem of finding a point x0∈X such that f(x0,y)≥0 for all y∈X, is called an equilibrium problem. When the bifunction f is defined on the cartesian product of two distinct sets X and Y we will call it a generalized equilibrium problem. In this paper, we study the existence of the solutions, first for generalized equilibrium problems and then for equilibrium problems. In the obtained results, apart from the bifunction f, another bifunction is introduced, the two being linked by a certain compatibility condition. The particularity of the equilibrium theorems established in the last section consists of the fact that the classical equilibrium condition (f(x,x)=0, for all x∈X) is missing. The given applications refer to the Minty variational inequality problem and quasi-equilibrium problems.
generalized equilibrium problem, fixed point, QA1-939, generalized equilibrium problem; equilibrium problem; fixed point; variational inequality; quasi-equilibrium problem, variational inequality, quasi-equilibrium problem, equilibrium problem, Mathematics
generalized equilibrium problem, fixed point, QA1-939, generalized equilibrium problem; equilibrium problem; fixed point; variational inequality; quasi-equilibrium problem, variational inequality, quasi-equilibrium problem, equilibrium problem, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
