Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

Solving the Eigenfrequencies Problem of Waveguides by Localized Method of Fundamental Solutions with External Source

Authors: Ke Sun; Shuang Ding; Junli Zhang; Yan-Cheng Liu;

Solving the Eigenfrequencies Problem of Waveguides by Localized Method of Fundamental Solutions with External Source

Abstract

The localized method of fundamental solutions (LMFS) is a domain-type, meshless numerical method. Compared with numerical methods that have a high grid dependence, it does not require grid generation and numerical integration, so it can effectively improve computational efficiency and avoid complex integration processes. Moreover, it is formed using the traditional method of fundamental solutions (MFS) and the localization approach. Previous studies have shown that the MFS may produce a dense and ill-conditioned matrix. However, the proposed LMFS can yield a sparse system of linear algebraic equations, so it is more suitable and effective in solving complicated engineering problems. In this article, LMFS was used to solve eigenfrequency problems in electromagnetic waves, which were controlled using two-dimensional Helmholtz equations. Additionally, the resonant frequencies of the eigenproblem were determined by the response amplitudes. In order to determine the eigenfrequencies, LMFS was applied for solving a sequence of inhomogeneous problems by introducing an external source. Waveguides with different shapes were analyzed to prove the stability of the present LMFS in this paper.

Related Organizations
Keywords

external source, localized methods of fundamental solutions, Helmholtz equation; waveguides; eigenfrequencies problem; external source; localized methods of fundamental solutions, QA1-939, Helmholtz equation, waveguides, eigenfrequencies problem, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold