
Ferroelectric materials, with their spontaneous electric polarization, are renewing research enthusiasm for their deployment in high-performance micro/nano energy harvesting devices such as triboelectric nanogenerators (TENGs). Here, the introduction of ferroelectric materials into the triboelectric interface not only significantly enhances the energy harvesting efficiency, but also drives TENGs into the era of intelligence and integration. The primary objective of the following paper is to tackle the newest innovations in TENGs based on ferroelectric materials. For this purpose, we begin with discussing the fundamental idea and then introduce the current progress with TENGs that are built on the base of ferroelectric materials. Various strategies, such as surface engineering, either in the micro or nano scale, are discussed, along with the environmental factors. Although our focus is on the enhancement of energy harvesting efficiency and output power density by utilizing ferroelectric materials, we also highlight their incorporation in self-powered electronics and sensing systems, where we analyze the most favorable and currently accessible options in attaining device intelligence and multifunctionality. Finally, we present a detailed outlook on TENGs that are based on ferroelectric materials.
Review
Review
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
