
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>In the last decade, continuous research advances have been observed in the field of environmentally friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This research activity has become much more intense in the food packaging industry due to the high volume of waste it generates. Biopolymers are nowadays considered as among the most promising materials to solve these environmental problems. However, they still show inferior performance regarding both processability and end-use application. Blending currently represents a very cost-effective strategy to increase the ductility and impact resistance of biopolymers. Furthermore, different lignocellulosic materials are being explored to be used as reinforcing fillers in polymer matrices for improving the overall properties, lower the environmental impact, and also reduce cost. Moreover, the use of vegetable oils, waste derived liquids, and essential oils opens up novel opportunities as natural plasticizers, reactive compatibilizers or even active additives for the development of new polymer formulations with enhanced performance and improved sustainability profile.
Bio-based polymers, Green composites, Biodegradable polyesters, Bioplastics manufacturing, Natural additives and fillers, Editorial, Composites characterization, Wood plastic composites
Bio-based polymers, Green composites, Biodegradable polyesters, Bioplastics manufacturing, Natural additives and fillers, Editorial, Composites characterization, Wood plastic composites
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
