
doi: 10.3390/jsan3010001
Compressed sensing is a thriving research field covering a class of problems where a large sparse signal is reconstructed from a few random measurements. In the presence of several sensor nodes measuring correlated sparse signals, improvements in terms of recovery quality or the requirement for a fewer number of local measurements can be expected if the nodes cooperate. In this paper, we provide an overview of the current literature regarding distributed compressed sensing; in particular, we discuss aspects of network topologies, signal models and recovery algorithms.
Technology, greedy algorithms, T, distributed greedy pursuit, distributed compressed sensing, distributed compressed sensing; distributed greedy pursuit; greedy algorithms
Technology, greedy algorithms, T, distributed greedy pursuit, distributed compressed sensing, distributed compressed sensing; distributed greedy pursuit; greedy algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
