
In 1962, H. Yilmaz published a very original paper in which he showed the striking analogy between Lorentz transformations and the effect of illuminant changes on color perception. As a consequence, he argued that a perceived color space endowed with the Minkowski metric is a good approximation to model color vision. The contribution of this paper is twofold: firstly, we provide a mathematical formalization of Yilmaz’s argument about the relationship between Lorentz transformations and the perceptual effect of illuminant changes. Secondly, we show that, within Yilmaz’s model, the color space can be coherently endowed with the Minkowski metric only by imposing the Euclidean metric on the hue-chroma plane. This fact motivates the need of further investigation about both the proper definition and interrelationship among the color coordinates and also the geometry and metrics of perceptual color spaces.
Computer applications to medicine. Medical informatics, R858-859.7, QA75.5-76.95, hyperbolic geometry, Article, Lorentz transformations, space of perceived colors, Yilmaz’s model, Electronic computers. Computer science, Photography, TR1-1050
Computer applications to medicine. Medical informatics, R858-859.7, QA75.5-76.95, hyperbolic geometry, Article, Lorentz transformations, space of perceived colors, Yilmaz’s model, Electronic computers. Computer science, Photography, TR1-1050
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
