<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.3390/info11020085
handle: 11568/1034782
Energy consumption is a relevant matter in the design of IoT applications. Edge units—sensors and actuators—save energy by operating intermittently. When idle, they suspend their operation, losing the content of the onboard memory. Their internal state, needed to resume their work, is recorded on external storage: in the end, their internal operation is stateless. The backend infrastructure does not follow the same design principle: concentrators, routers, and servers are always-on devices that frustrate the energy-saving operation of edge devices. In this paper, we show how serverless functions, asynchronously invoked by the stateless edge devices, are an energy-saving option. We introduce a basic model for system operation and energy footprint evaluation. To demonstrate its soundness, we study a simple use case, from the design to a prototype.
serverless application; power consumption; Internet of things; asynchronous computation, Internet of things, power consumption, serverless application, Information technology, asynchronous computation, T58.5-58.64, internet of things
serverless application; power consumption; Internet of things; asynchronous computation, Internet of things, power consumption, serverless application, Information technology, asynchronous computation, T58.5-58.64, internet of things
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |