Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.3390/engpro...
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Engineering Proceedings
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Embroidery Triboelectric Nanogenerator

Authors: Hasan Riaz Tahir; Sanaul Sujan; Benny Malengier; Lieva Van Langenhove;

Embroidery Triboelectric Nanogenerator

Abstract

The “Embroidery Triboelectric Nanogenerator” (E-TENG) is a wearable device that extracts energy from human motion by making use of the triboelectric phenomena, in addition to conductive fabric along with embroidery threads. One of the greatest ways to transform ambient vibrational energy from the human body is to use a wearable triboelectric energy harvester. In this study, different E-TENGs were developed using conductive fabric as an electrode and two different triboelectric yarns, 100% Polyester (electron donor) and Nylon 6,6 (electron receiver). To investigate the electrical outputs and energy-collecting potential of the ETENG, different stitch length and line spacing of embroidery TENG were investigated by testing samples in a specially manufactured tapping and sliding devices. The optimized wearable embroidery energy harvester effectively captured 72 μJ (12 V) of human motion energy in a 1 μF capacitor in 120 s and 307.5 μJ (24.8 V) of energy in a 1 μF capacitor by 1.5 Hz sliding motion in 300 s from an ETFS3.1 sample. A maximum of 4.5 μJ (3 V) was collected in a 1 μF capacitor from ETFS2.3 using a tapping machine for 520 s at a 2 Hz tapping motion and a 50 mm separation distance. The effects of the stitch length and line spacing in the embroidered structure on the electrical output performance of the embroidery energy-harvesting TENG were investigated.

Country
Belgium
Related Organizations
Keywords

wearable energy harvesting, Engineering machinery, tools, and implements, Technology and Engineering, triboelectric effect, conductive substrate, human kinetics, TA213-215, E-TENG (embroidery triboelectric nanogenerator)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold