
doi: 10.3390/eng5010002
handle: 20.500.12876/Dw88JJkw
The three-dimensional (3D) product model has become a tool that has transitioned from a legacy instrument, used in design, to an emerging technology applied to production and assembly processes. As this evolution has occurred, the need has developed to understand the value of deploying the 3D product model beyond the design phase. This research answers the question and solves the problem, does electronic documentation inclusive of the 3D product model add to the production workers’ ability to complete the production task? To answer this question, the methods used were that the research team tested how accurately and quickly a production and assembly team could build the product using interactive, electronic documentation, including the 3D product model, as a means to understand the design intent as opposed to printed bills of materials (BOMs) and two-dimensional (2D) paper drawings. The conclusions that can be drawn from this research are that the research found statistically significant improvements in the production throughput time (~10%), reductions in the direct labor hours per unit (~14%), and retained quality levels, when deploying electronic documentation, including the 3D product model, into the production and assembly processes. Through the deployment of the interactive 3D product model electronic documentation to the production floor, the organization also took a step towards creating a digital twin of the produced product and laid a foundation for the further adoption of Industry 4.0 practices. The novelty of the work and the areas where it goes beyond previous efforts in the literature concerns the current body of knowledge that does not demonstrate a repeatable methodology through which industry and other researchers can replicate the experiment on demonstrating economic value when deploying the 3D product model to production and assembly processes. In this paper, the authors aim to build on prior work to demonstrate a repeatable methodology for determining the economic value of 3D product model deployment in production and assembly processes through applied research.
assembly, manufacturing industry applications, process planning systems, 3D product model, DegreeDisciplines::Engineering::Mechanical Engineering::Manufacturing, Electrical engineering. Electronics. Nuclear engineering, automotive industry applications, concurrent engineering, TK1-9971
assembly, manufacturing industry applications, process planning systems, 3D product model, DegreeDisciplines::Engineering::Mechanical Engineering::Manufacturing, Electrical engineering. Electronics. Nuclear engineering, automotive industry applications, concurrent engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
