Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

2-Stroke RCCI Engines for Passenger Cars

Authors: Mattarelli E.; Rinaldini C. A.; Marmorini L.; Caprioli S.; Legrottaglie F.; Scrignoli F.;
APC: 1,540.13 EUR

2-Stroke RCCI Engines for Passenger Cars

Abstract

Reactivity Controlled Compression Ignition (RCCI) is one of the most promising solutions among the low temperature combustion concepts, in terms of thermal efficiency and pollutant emissions. However, for values of brake mean effective pressure higher than 10 bar, in-cylinder peak pressure rise rates tend to be too high, limiting the specific power of any 4-Stroke (4S) engine. Such a limitation can be canceled by moving to the 2-Stroke (2S) cycle. Among many alternatives, the “Uniflow” scavenging system with exhaust poppet valves on the cylinder head allows the designer to reproduce the same identical combustion patterns of a 4-stroke RCCI engine, while increasing the indicated power output. The goal of the paper is to explore the potential of a 2-stroke RCCI engine, on the basis of a comprehensive experimental campaign carried out on a modified automotive 2.0 L, 4-stroke, four-cylinder, four-valve diesel engine. The developed prototype can run with one cylinder operating in 4-stroke RCCI mode (gasoline–diesel), while the others work in the standard diesel mode. A One Dimensional-Computational Fluid Dynamics (1D-CFD) model has been built to predict the performance of the same prototype, when operating all four cylinders in RCCI mode. In parallel, an equivalent 2-stroke RCCI virtual engine has been developed, by means of 1D-CFD simulations and empirical assumptions. A numerical comparison between the 4S and the 2S engines is finally presented, in terms of performance and emissions at full load. The study demonstrates that a 2S RCCI engine can maintain all of the advantages of the RCCI combustion, strongly reducing the penalization in terms of performance, in comparison to a standard 4S diesel engine.

Country
Italy
Keywords

experimental engine characterization, Technology, automotive diesel engine; 4-stroke; RCCI (gasoline–diesel); experimental engine characterization; 1D-CFD; 2-stroke; Uniflow scavenging, 2-stroke, T, 4-stroke, automotive diesel engine, 1D‐CFD; 2‐stroke; 4‐stroke; Automotive diesel engine; Experimental engine characterization; RCCI (gasoline – diesel); Uniflow scavenging, 1D-CFD, RCCI (gasoline–diesel)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 166
    download downloads 206
  • 166
    views
    206
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
166
206
Green
gold