Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

Efficient Gaussian Process Calculations Using Chebyshev Nodes and Fast Fourier Transform

Authors: Adrian Dudek; Jerzy Baranowski;

Efficient Gaussian Process Calculations Using Chebyshev Nodes and Fast Fourier Transform

Abstract

Gaussian processes have gained popularity in contemporary solutions for mathematical modeling problems, particularly in cases involving complex and challenging-to-model scenarios or instances with a general lack of data. Therefore, they often serve as generative models for data, for example, in classification problems. However, a common problem in the application of Gaussian processes is their computational complexity. To address this challenge, sparse methods are frequently employed, involving a reduction in the computational domain. In this study, we propose an innovative computational approach for Gaussian processes. Our method revolves around selecting a computation domain based on Chebyshev nodes, with the optimal number of nodes determined by minimizing the degree of the Chebyshev series, while ensuring meaningful coefficients derived from function values at the Chebyshev nodes with fast Fourier transform. This approach not only facilitates a reduction in computation time but also provides a means to reconstruct the original function using the functional series. We conducted experiments using two computational methods for Gaussian processes: Markov chain Monte Carlo and integrated nested Laplace approximation. The results demonstrate a significant reduction in computation time, thereby motivating further development of the proposed algorithm.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold