
Chemical phosphorylation of hyaluronic acid (HA) remains an unresolved problem for the chemistry of this unique polysaccharide, since convenient phosphorylating reagents are not reactive enough to obtain HA phosphates (HA-P) with a satisfactory degree of esterification of hydroxyl groups. The synthesis of phosphates of low-molecular-weight (43 kDa) and high-molecular-weight (0.5–0.7 MDa) HA was undertaken using such reagents as sodium trimetaphosphate Na3P3O9, H3PO4, NaH2PO4/Na2HPO4, and anhydride P2O5. Solid-phase HA esterification with P2O5 was found to be the most convenient and efficient method. The HA-P samples were characterized by XRF and NMR spectroscopy (31P and 1H-31P) and contained, depending on the HA/P2O5 ratio, 0.30–6.25% P wt., in the form of disubstituted mono-, di-, and polyphosphates.
oxide phosphorus (V), Chemistry, polyphosphates, hyaluronic acid, dry phosphorylation, QD1-999
oxide phosphorus (V), Chemistry, polyphosphates, hyaluronic acid, dry phosphorylation, QD1-999
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
