
The generalized likelihood ratio test (GLRT) for composite hypothesis testing problems is studied from a geometric perspective. An information-geometrical interpretation of the GLRT is proposed based on the geometry of curved exponential families. Two geometric pictures of the GLRT are presented for the cases where unknown parameters are and are not the same under the null and alternative hypotheses, respectively. A demonstration of one-dimensional curved Gaussian distribution is introduced to elucidate the geometric realization of the GLRT. The asymptotic performance of the GLRT is discussed based on the proposed geometric representation of the GLRT. The study provides an alternative perspective for understanding the problems of statistical inference in the theoretical sense.
information geometry, Science, Physics, QC1-999, Communication, Q, maximum likelihood estimation, information loss, Astrophysics, composite hypothesis testing, QB460-466, generalized likelihood ratio test, statistical inference
information geometry, Science, Physics, QC1-999, Communication, Q, maximum likelihood estimation, information loss, Astrophysics, composite hypothesis testing, QB460-466, generalized likelihood ratio test, statistical inference
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
