
A function which transforms a continuous random variable such that it has a specified distribution is called a replicating function. We suppose that functions may be assigned a price, and study an optimization problem in which the cheapest approximation to a replicating function is sought. Under suitable regularity conditions, including a bound on the entropy of the set of candidate approximations, we show that the optimal approximation comes close to achieving distributional replication, and close to achieving the minimum cost among replicating functions. We discuss the relevance of our results to the financial literature on hedge fund replication; in this case, the optimal approximation corresponds to the cheapest portfolio of market index options which delivers the hedge fund return distribution.
Science, Physics, QC1-999, hedge fund replication, Q, Astrophysics, Article, QB460-466, distributional replication, distributional replication, sieve estimation, hedge fund replication, sieve estimation
Science, Physics, QC1-999, hedge fund replication, Q, Astrophysics, Article, QB460-466, distributional replication, distributional replication, sieve estimation, hedge fund replication, sieve estimation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
