Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computers
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computers
Article . 2025
License: CC BY
Data sources: ResearchOnline@GCU
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Empirical Performance Analysis of WireGuard vs. OpenVPN in Cloud and Virtualised Environments Under Simulated Network Conditions

Authors: Joel Anyam; Rajiv Ranjan Singh; Hadi Larijani; Anand Philip;

Empirical Performance Analysis of WireGuard vs. OpenVPN in Cloud and Virtualised Environments Under Simulated Network Conditions

Abstract

With the rise in cloud computing and virtualisation, secure and efficient VPN solutions are essential for network connectivity. We present a systematic performance comparison of OpenVPN (v2.6.12) and WireGuard (v1.0.20210914) across Azure and VMware environments, evaluating throughput, latency, jitter, packet loss, and resource utilisation. Testing revealed that the protocol performance is highly context dependent. In VMware environments, WireGuard demonstrated a superior TCP throughput (210.64 Mbps vs. 110.34 Mbps) and lower packet loss (12.35% vs. 47.01%). In Azure environments, both protocols achieved a similar baseline throughput (~280–290 Mbps), though OpenVPN performed better under high-latency conditions (120 Mbps vs. 60 Mbps). Resource utilisation showed minimal differences, with WireGuard maintaining slightly better memory efficiency. Security Efficiency Index calculations revealed environment-specific trade-offs: WireGuard showed marginal advantages in Azure, while OpenVPN demonstrated better throughput efficiency in VMware, though WireGuard remained superior for latency-sensitive applications. Our findings indicate protocol selection should be guided by deployment environment and application requirements rather than general superiority claims.

Country
United Kingdom
Related Organizations
Keywords

Human-Computer Interaction, virtualisation, Computer Networks and Communications, cloud computing, Computer Science (miscellaneous), WireGuard, OpenVPN, performance evaluation, VPN

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold
Related to Research communities