Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chipsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chips
Other literature type . 2023
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chips
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chips
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

Hybrid Inverter-Based Fully Differential Operational Transconductance Amplifiers

Authors: Luís Henrique Rodovalho; Pedro Toledo; Farzad Mir; Farshad Ebrahimi;

Hybrid Inverter-Based Fully Differential Operational Transconductance Amplifiers

Abstract

Inverter-based Operational Transconductance Amplifiers (OTAs) are versatile and friendly scalable analog circuit blocks. Especially for the new CMOS technological nodes, several recent applications have been extensively using them, ranging from Analog Front End (AFE) to analog-to-digital converters (ADC). This work tracks down the current advances in inverter-based OTAs design, comparing their basic fully differential structures, such as Nauta (N), Barthelemy (B), Vieru (V) and Mafredini (M) ones, and, in addition, mixing them up to propose new fully differential single-ended and two-stage hybrid versions. The new herein-proposed fully differential hybrid OTAs are the composition of Barthelemy/Nauta (B/N), Barthelemy/Manfredini (B/M), Nauta/Vieru (N/V), and Manfredini/Vieru (M/V) OTAs. All OTAs were designed using the same Global Foundries 180 nm open-source PDK and their performances are compared for post-layout simulations.

Keywords

operational transconductance amplifiers, open-source PDK, Electronic computers. Computer science, inverter-based amplifiers; operational transconductance amplifiers; open-source PDK, inverter-based amplifiers, QA75.5-76.95, Electric apparatus and materials. Electric circuits. Electric networks, TK452-454.4

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold